Show $f(x)$ ($C^1$ smooth) is strongly convex iff $g(x)=f(x)-\frac{\alpha}{2}\|x\|^2$ is convex.
I'll use the definition of convexity, $f(y)\ge f(x)+\langle\nabla f(x), y-x\rangle$.
$f(y)-\frac{\alpha}{2}\|y\|^2\ge f(x)-\frac{\alpha}{2}\|x\|^2+\langle\nabla(f(x)-\frac{\alpha}{2}\|x\|^2),y-x\rangle$
I can distribute the $\nabla$ and break apart the inner product.
$f(y)-\frac{\alpha}{2}\|y\|^2\ge f(x)-\frac{\alpha}{2}\|x\|^2+\langle\nabla f(x),y-x\rangle-\langle\nabla\frac{\alpha}{2}\|x\|^2,y-x\rangle$
I can move the $\frac{\alpha}{2}\|y\|^2$ to the other side.
$f(y)\ge f(x)+\langle\nabla f(x),y-x\rangle+\frac{\alpha}{2}(\|y\|^2-\|x\|^2)-\langle\nabla\frac{\alpha}{2}\|x\|^2,y-x\rangle$
I'm not sure what to do with the last two terms to move toward the definition of strong convexity, namely $f(y)\ge f(x)+\langle\nabla f(x), y-x\rangle+\frac{\alpha}{2}\|y-x\|^2$.