Consider the integral
$$I(a,b)=\int_0^{\pi/2}\sin(x)^a\cos(x)^b\mathrm dx,\qquad a,b>-1$$
Setting $t=\sin(x)^2$:
$$I(a,b)=\frac12\int_0^1t^{\frac{a-1}2}(1-t)^{\frac{b-1}2}\mathrm dt$$
Then recall the definition of the beta function
$$\mathrm{B}(a,b)=\int_0^1t^{a-1}(1-t)^{b-1}\mathrm dt=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$
We use this to see that
$$I(a,b)=\frac{\Gamma(\frac{a+1}2)\Gamma(\frac{b+1}2)}{2\Gamma(\frac{a+b}2+1)}$$
Hence
$$\int_0^{\pi/2}\tan(x)^a\mathrm dx=\frac12\Gamma\left(\frac{1+a}2\right)\Gamma\left(\frac{1-a}2\right)$$
Then using $$\Gamma(1-s)\Gamma(s)=\frac{\pi}{\sin\pi s}$$
It can be easily shown that
$$\Gamma\left(\frac{1+s}2\right)\Gamma\left(\frac{1-s}2\right)=\pi\sec\frac{\pi s}2$$
So
$$\int_0^{\pi/2}\tan(x)^a\mathrm dx=\frac\pi2\sec\frac{\pi a}2$$
Which you know works for $|a|<1$.
This can be used to show that
$$\int_0^{\pi/2} \log^{n}[\tan x]\mathrm dx=\frac\pi2\left(\frac{d}{da}\right)^n\sec\frac{\pi a}2\,\bigg|_{a=0}$$
Or simply
$$\int_0^{\pi/2} \tan(x)^{a}\log^{n}[\tan x]\mathrm dx=\frac\pi2\left(\frac{d}{da}\right)^n\sec\frac{\pi a}2$$
To show this just take $\left(\frac{d}{da}\right)^n$ on both sides for integer $n$.