We just use the distributive law:
$$a\lor(b \land c)\equiv(a \lor b)\land(a \lor c)$$
Distributivity is analogous to distributivity of multiplication over addition: $$a \times (b + c) = a\times b + a\times c$$
For eg. in your case, we have
$$=(a \land b) \lor (c \land d) \lor (e \land f)$$
$$\equiv (a + b) \times (c + d) \times (e + f)$$ (consider symbolic change for understanding)
$$\equiv (a \times c \times e) + (a \times c \times f) + (a \times d \times e)+ (a \times d \times f) + (b \times c \times e) + (b \times c \times f)+ (b \times d \times e)+ (b \times d \times f)$$
which is exactly what is written as $$(\neg P \lor \neg P \lor R) \land (\neg P \lor \neg Q \lor R) \land (\neg P \lor \neg P \lor Q) \land (\neg P \lor \neg Q \lor Q) \land (R \lor \neg P \lor R) \land (R \lor \neg Q \lor R) \land (R \lor \neg P \lor Q) \land (R \lor \neg Q \lor Q)$$