You cannot multiply distributions, you have to define $\theta(t)/t$ separately. If it's defined as
$$\left( \frac {\theta(t)} t, \phi \right) =
\int_{t > 0} \frac {\phi(t) - \phi(0) [t < 1]} t dt,$$
then you can combine known results for the transforms of $1/t$ and $1/|t|$ to obtain
$$\left( \frac {\theta(t)} t, e^{i p t} \right) =
-\ln(-i p ) - \gamma.$$
For the other two functions, these integrals exist in the ordinary sense:
$$\int_0^\infty (e^{-1/t} - 1) \,e^{i p t} dt =
\frac {2 K_1(2 \sqrt{-i p \,})} {\sqrt{-i p \,}} -\frac i p, \\
\int_0^\infty (e^{-1/t^2} - 1) \,e^{i p t} dt =
\cases{
\frac i {p \sqrt \pi} G_{0, 3}^{3, 0}
\left( -\frac {p^2} 4 \middle| {- \atop 0, \frac 1 2, 1} \right) -\frac i p, &
$p < 0$ \\
\\
\frac i {p \sqrt \pi} G_{3, 0}^{0, 3}
\left( -\frac 4 {p^2} \middle| {0, \frac 1 2, 1 \atop -} \right) -\frac i p, &
$p > 0$},$$
where $K$ is the modified Bessel function and $G$ is the Meijer G-function. Then adding the transform of $\theta(t)$ gives the answer.