$$\arctan(x) - \arctan(2/x) = \arctan(7/9)$$ where $x$ is positive .
The answer should be 3. Thanks
$$\arctan(x) - \arctan(2/x) = \arctan(7/9)$$ where $x$ is positive .
The answer should be 3. Thanks
Using $$\tan(A-B)=\frac{\tan A-\tan B}{1+\tan A\tan B}$$ we get the equation $$\frac{x-2/x}{1+2}=\frac79$$ which looks like a nice quadratic equation.
$$\arctan\dfrac2x+\arctan\dfrac79=\arctan\dfrac{18+7x}{9x-14}$$ for $\dfrac{2\cdot7}{x\cdot9}<1$ which happens if $x<0$ or if $x>\dfrac{14}9$
What if $\dfrac{14}{9x}\ge1?$