1

Theorem. Let $f:X\rightarrow{Y}$ be a continuous function. They are equivalent: $f(\overline{A})\subseteq\overline{f(A)}$ for all $A\subseteq X$ iff $f^{-1}(B^{\circ})\subseteq(f^{-1}(B))^{\circ}$ for all $B\subseteq Y$

Proof: Let $ B\subseteq{Y} $ be. Let's see that $f^{-1}(B^{\circ})\subseteq{(f^{-1} (B))^{\circ}} $. Note that $ B^{\circ} = Y\setminus{(\overline{Y\setminus {B}})} $. Then $$ f^{-1}(B^{\circ})= f^{- 1}(Y\setminus {(\overline {Y\setminus{B}})}) = X \setminus{f^{-1} (\overline {Y\setminus{B}})} $$ On the other hand, we have $$ (f^{- 1}(B))^{\circ} = X\setminus {\overline { (X \setminus {f^{- 1} (B)}})} = X \setminus {\overline {f ^ {- 1} (Y \setminus {B})}} $$ Now, let's see that $ \overline {f ^ {- 1} (Y \setminus {B})} \subseteq {f ^ {- 1} (\overline {Y \setminus {B}})} $. Let $ A = f ^ {- 1} (Y \setminus {B}) \subseteq {X} $ be. By hypothesis, we have $$ f (\overline {f ^ {- 1} (Y \setminus {B})}) \subseteq {\overline {f (f ^ {- 1} (Y \setminus {B})) }} \subseteq {\overline {Y \setminus {B}}} $$ For the above, we have $$ \overline {f ^ {- 1} (Y \setminus {B})} \subseteq {f ^ {- 1} (f (\overline {f ^ {- 1} (Y \setminus {B})}))} \subseteq {f ^ {- 1} (\overline {Y \setminus {B}})} $$ Therefore, $$ f ^ {- 1} (B ^ {\circ}) \subseteq {X \setminus {f ^ {- 1} (\overline {Y \setminus {B}})}} \subseteq { X \setminus {\overline {f ^ {- 1} (Y \setminus {B})}}} = {(f ^ {- 1} (B)) ^ {\circ}} $$ Reciprocally, Let $ A \subseteq {X} $ be. Let's see that $ f (\overline {A}) \subseteq {\overline {f (A)}} $. Note that $ \overline {A} = X \setminus {(X \setminus {A}) ^ {\circ}} $. Then $$ f (\overline {A}) = f (X \setminus {(X \setminus {A}) ^ {\circ}}) \subseteq {Y \setminus {f ((X \setminus {A}) ^ {\circ})}} $$ On the other hand, we have $$ \overline {f (A)} = Y \setminus {(Y \setminus {f (A)}) ^ {\circ}} $$ Now , let's see that $ (Y \setminus {f (A)}) ^ {\circ} \subseteq {f ((X \setminus {A}) ^ {\circ})} $. Let $ B = Y \setminus {f (A)} \subseteq {Y} $ be. By hypothesis, we have $$ f ^ {- 1} ((Y \setminus {f (A)}) ^ {\circ}) \subseteq {(f ^ {- 1} (Y \setminus {f (A)} )) ^ {\circ}} $$ Note that $ f ^ {- 1} (Y \setminus {f (A)}) = X \setminus {f ^ {- 1} (f (A))} \subseteq {X \setminus {A}} $. Then $$ f ^ {- 1} ((Y \setminus {f (A)}) ^ {\circ}) \subseteq {(X \setminus {A}) ^ {\circ}} $$ Thus, $ f (f ^ {- 1} ((Y \setminus {f (A)})^ {\circ})) \subseteq {f ((X \setminus {A})^ {\circ})} $

I don't know how to conclude...

2 Answers2

1

Referring to the link: Relation between interior and exterior.

Given that $f^{-1}$ exists, so $f$ is bijective and $f$ is given continuous so $f^{-1}$ is open. Let, $A\subset X$ and $f(\overline A)\subset \overline{f(A)}$ holds.

Now, let $B\subset Y$ then $$B^\circ=Y-\overline{Y-B}\\ \implies f^{-1}(B^\circ)=f^{-1}(Y-\overline{Y-B})\\=X-f^{-1}(\overline{Y-B})\\ \subset X-\overline {f^{-1}(Y-B)}\\=X-\overline{X-f^{-1}(B)}\\=f^{-1}(B)^\circ$$

Now repeat the same process by setting $\overline A=X-(X-A)^\circ$.

  • It is not given that $f^{-1}$ exists, this is just the notation for the inverse image... – Henno Brandsma Jan 28 '19 at 05:28
  • @SujitBhattacharyya $X-f^{-1}(\overline{Y-B})\subset X-\overline {f^{-1}(Y-B)}$? Why? – Darkmaster Jan 28 '19 at 05:32
  • @HennoBrandsma $f^{-1}$ is the inverse image of which map? $f$ of course. That's why I have written that $f^{-1}$ exists. – Sujit Bhattacharyya Jan 28 '19 at 05:44
  • For any function $f:X \to Y$, $f^{-1}(A)={x \in X: f(x) \in A}$ if $A \subseteq Y$. No need for an inverse function. – Henno Brandsma Jan 28 '19 at 05:46
  • @Darkmaster Set, $f(A)=B\implies A=f^{-1}(B)$, given $f(\overline A)\subset \overline {f(A)}\implies \overline A\subset f^{-1}(\overline {f(A)})\implies \overline{f^{-1}(B)}\subset f^{-1}(\overline B)$. For similarity replace $B$ by $Y-B$ and observe its complement. – Sujit Bhattacharyya Jan 28 '19 at 05:48
  • @HennoBrandsma Thanks for the tip. Let me work on that, I will edit the post if I find a solution under that particular definition. ps: is that true that $f^{-1}(Y)=X$ under the definition ? – Sujit Bhattacharyya Jan 28 '19 at 05:55
  • @HennoBrandsma $A=f^{-1}(f(A))$ for all $A\subseteq{X}$ iff f is injective. Also, $f^{-1}(\overline{Y-B})=\overline{f^{-1}(\overline{Y-B})} \implies \overline{f^{-1}(Y-B)}\subseteq{f^{-1}(\overline{Y-B})}$. – Darkmaster Jan 28 '19 at 06:12
  • Yes, $f^{-1}[Y]=X$ always. And even $f^{-1}[f[{x}]] = {x}$ for all $x \in A$ is enough for 1-1-ness. Not sure about your last implication, $\overline{A} = \overline{B}$ does not imply $\overline{A} \subseteq B$..... – Henno Brandsma Jan 28 '19 at 06:54
  • $f(A)=B$ does not imply $A=f^{-1}(B)$ (Only $\subseteq$). So that argument fails. – Henno Brandsma Jan 28 '19 at 16:52
0

The following two statements about a function $f:X \to Y$ between topological spaces are equivalent:

  1. $\forall A \subseteq X: f[\overline{A}] \subseteq \overline{f[A]}$.
  2. For all closed $C \subseteq Y$: $f^{-1}[C]$ is closed in $X$.

For 1 implies 2: let $C$ be closed in $Y$. Define $D = f^{-1}[C]$ and apply fact 1 to it: $$f[\overline{D}] \subseteq \overline{f[D]} = \overline{f[f^{-1}[C]]}\subseteq \overline{C} = C$$ as $C$ is closed. But this implies that $\overline{D} \subseteq f^{-1}[C] =D$ (all points of $\overline{D}$ map into $C$) and so $D = f^{-1}[C]$ is closed, as required.

For 2 implies 1: Let $A \subseteq X$ and note we have $$A \subseteq f^{-1}[f[A]] \subseteq f^{-1}[\overline{f[A]}]$$ and by 2. the latter set is closed. Hence $\overline{A} \subseteq f^{-1}[\overline{f[A]}]$ as well and this means that $f[\overline{A}]\subseteq \overline{f[A]}$ by the definitions of inverse images.


The following two statements about a function $f:X \to Y$ between topological spaces are equivalent:

  1. $\forall B \subseteq Y: f^{-1}[B^\circ] \subseteq f^{-1}[B]^\circ$.
  2. For all $O \subseteq Y$ open, $f^{-1}[O]$ is open in $X$.

For 3 implies 4: let $O$ be open in $Y$, then $O^\circ = O$ and by 3: $$f^{-1}[O]= f^{-1}[O^\circ] \subseteq f^{-1}[O]^\circ \subseteq f^{-1}[O]$$ so $f^{-1}[O]^\circ = f^{-1}[O]$ and $f^{-1}[O]$ is open.

For 4 implies 3: if $B \subseteq Y$ is any subset $B^\circ \subseteq B$ so also $f^{-1}[B^\circ] \subseteq f^{-1}[B]$. The former is an open subset (by 4) contained in $f^{-1}[B]$ and the interior of a set is its largest open subset so it follows that $f^{-1}[B^\circ] \subseteq f^{-1}[B]^\circ$, as required.


Now note that 2 and 4 are clearly equivalent as $f^{-1}[Y\setminus A]= X\setminus f^{-1}[A]$ for all subsets $B$ of $Y$, and open and closed sets are related via complements.

So all conditions are equivalent to $f$ being continuous.

Henno Brandsma
  • 242,131