Theorem. Let $f:X\rightarrow{Y}$ be a continuous function. They are equivalent: $f(\overline{A})\subseteq\overline{f(A)}$ for all $A\subseteq X$ iff $f^{-1}(B^{\circ})\subseteq(f^{-1}(B))^{\circ}$ for all $B\subseteq Y$
Proof: Let $ B\subseteq{Y} $ be. Let's see that $f^{-1}(B^{\circ})\subseteq{(f^{-1} (B))^{\circ}} $. Note that $ B^{\circ} = Y\setminus{(\overline{Y\setminus {B}})} $. Then $$ f^{-1}(B^{\circ})= f^{- 1}(Y\setminus {(\overline {Y\setminus{B}})}) = X \setminus{f^{-1} (\overline {Y\setminus{B}})} $$ On the other hand, we have $$ (f^{- 1}(B))^{\circ} = X\setminus {\overline { (X \setminus {f^{- 1} (B)}})} = X \setminus {\overline {f ^ {- 1} (Y \setminus {B})}} $$ Now, let's see that $ \overline {f ^ {- 1} (Y \setminus {B})} \subseteq {f ^ {- 1} (\overline {Y \setminus {B}})} $. Let $ A = f ^ {- 1} (Y \setminus {B}) \subseteq {X} $ be. By hypothesis, we have $$ f (\overline {f ^ {- 1} (Y \setminus {B})}) \subseteq {\overline {f (f ^ {- 1} (Y \setminus {B})) }} \subseteq {\overline {Y \setminus {B}}} $$ For the above, we have $$ \overline {f ^ {- 1} (Y \setminus {B})} \subseteq {f ^ {- 1} (f (\overline {f ^ {- 1} (Y \setminus {B})}))} \subseteq {f ^ {- 1} (\overline {Y \setminus {B}})} $$ Therefore, $$ f ^ {- 1} (B ^ {\circ}) \subseteq {X \setminus {f ^ {- 1} (\overline {Y \setminus {B}})}} \subseteq { X \setminus {\overline {f ^ {- 1} (Y \setminus {B})}}} = {(f ^ {- 1} (B)) ^ {\circ}} $$ Reciprocally, Let $ A \subseteq {X} $ be. Let's see that $ f (\overline {A}) \subseteq {\overline {f (A)}} $. Note that $ \overline {A} = X \setminus {(X \setminus {A}) ^ {\circ}} $. Then $$ f (\overline {A}) = f (X \setminus {(X \setminus {A}) ^ {\circ}}) \subseteq {Y \setminus {f ((X \setminus {A}) ^ {\circ})}} $$ On the other hand, we have $$ \overline {f (A)} = Y \setminus {(Y \setminus {f (A)}) ^ {\circ}} $$ Now , let's see that $ (Y \setminus {f (A)}) ^ {\circ} \subseteq {f ((X \setminus {A}) ^ {\circ})} $. Let $ B = Y \setminus {f (A)} \subseteq {Y} $ be. By hypothesis, we have $$ f ^ {- 1} ((Y \setminus {f (A)}) ^ {\circ}) \subseteq {(f ^ {- 1} (Y \setminus {f (A)} )) ^ {\circ}} $$ Note that $ f ^ {- 1} (Y \setminus {f (A)}) = X \setminus {f ^ {- 1} (f (A))} \subseteq {X \setminus {A}} $. Then $$ f ^ {- 1} ((Y \setminus {f (A)}) ^ {\circ}) \subseteq {(X \setminus {A}) ^ {\circ}} $$ Thus, $ f (f ^ {- 1} ((Y \setminus {f (A)})^ {\circ})) \subseteq {f ((X \setminus {A})^ {\circ})} $
I don't know how to conclude...