I am reading "An Introduction to Algebraic Systems" by Kazuo Matsuzaka.
There is the following problem in this book:
Let $G$ be a non-abelian finite group.
Let $f$ be an automorphism of $G$ such that $f^2 = I_G$.
Show that there exists $x \in G$ such that $f(x) = x$ and $x \neq e$.
My attempt is here:
(1)
If $x' = f(x)$, then $x = f(f(x)) = f(x')$.
So, we can write as follows:
$x \stackrel{\mathrm{f}}{\longleftrightarrow} x'$.
This problem says there exists $y \neq e$ such that
$y \stackrel{\mathrm{f}}{\longleftrightarrow} y$.
(2)
$H := \{x \in G | f(x) = x\}$ is a subgroup of $G$.
So, we need to show $H \neq \{e\}$.
(3)
Let $G = \{x_1, x_2, \cdots, x_n\}$.
Let $f(x_i) = x_i'$ for $i \in \{1, 2, \cdots, n\}$.
Then,
$x_1 \stackrel{\mathrm{f}}{\longleftrightarrow} x_1'$.
$x_2 \stackrel{\mathrm{f}}{\longleftrightarrow} x_2'$.
$\cdots$
$x_n \stackrel{\mathrm{f}}{\longleftrightarrow} x_n'$.
And
$G = \{x_1, x_2, \cdots, x_n\} = \{x_1', x_2', \cdots, x_n'\}$.
So,
$x_1 x_2 \cdots x_n \stackrel{\mathrm{f}}{\longleftrightarrow} x_1' x_2' \cdots x_n' = x_1 x_2 \cdots x_n$.
So,
$x_1 x_2 \cdots x_n \in H$.
But I cannot show that $x_1 x_2 \cdots x_n \neq e$.
(4)
I don't use the assumption that $G$ is non-abelian yet.