0

Let $ a+b\sqrt{-1} $ be a non-zero element of the ring of Gaussian integers $ \mathbb Z[\sqrt{-1}]. $ Show that $ | \mathbb Z[\sqrt{-1}]/(a+b\sqrt{-1}) |=a^2+b^2 $. [Jacobson, Basic Algebra, P202.3]

My attempt:

Since $ \mathbb{Z}[\sqrt{-1}] $ is a p.i.d. and we can factor $ a+b\sqrt{-1} $ into primes: $ a+b\sqrt{-1}=p_1^{j_1}p_2^{j_2}...p_n^{j_n} $, $\ p_i $ are primes in $ \mathbb Z[\sqrt {-1}] $, then we only have to prove the case for the primary quotient submodule in the following sense:

$$ | \mathbb Z[\sqrt{-1}]/(p_i^{j_i}) |=a^2+b^2\, ,\text{where $ a+bi=p_i^{j_i} $}. $$

From here I am stuck......

Bach
  • 5,730
  • 2
  • 20
  • 41

1 Answers1

1

The ideal $(a+b\sqrt{-1})$ forms a sublattice of $\Bbb Z[\sqrt{-1}]$ in the plane. The side length of a mesh square is clearly $\sqrt{a^2+b^2}$, so the area of a mesh is $a^2+b^2$ and hence contains essentially $a^2+b^2$ mesh squares of the $\Bbb Z[\sqrt{-1}]$ lattice.

cqfd
  • 12,219
  • 6
  • 21
  • 51