Proposition. Let $f\colon X\to Y$ a function. They are equivalent \begin{equation} \begin{split} (i)&\quad f\;\text{is injective};\\ (ii)&\quad\text{For all}\;E\subseteq X, E=f^{-1}\big(f(E)\big)\\ (iii)&\quad\text{For all}\;E\subseteq X, f(X)\setminus f(E)=f(X\setminus E);\\ (iv)&\quad\text{For all}\;\{E_i\}_{i\in I}\subseteq 2^{X},f\bigg(\bigcap_i E_i\bigg)=\bigcap_i f\big(E_i\big) \end{split} \end{equation}
Proof I already proved that $(ii)\iff(i)$ and $(i)\iff(iv)$, then we have that $(ii)\iff(iv)$.
Question. How can I prove that $(ii)\iff(iii)$?
I proved that, in general, $E\subseteq f^{-1}\big(f(E)\big)$ and $f(X)\setminus f(E)\subseteq f(X\setminus E).$
Thanks!