1

Prove or disprove the following: $2^{57} + 1$ is a composite number.

J. W. Tanner
  • 60,406

2 Answers2

5

Yes: $2^{57}+1\equiv(-1)^{57}+1=-1+1=0\mod 3$.

sranthrop
  • 8,497
3

We can factor $$2^{57}+1 = \left( 2^{19} \right)^3+1 = \left( \left(2^{19} \right)^2 -2^{19} + 1 \right)\left( 2^{19} + 1 \right)$$ where both factors are greater than $1$. Therefore, $2^{57}+1$ is composite.

JimmyK4542
  • 54,331