$h\in \mathbb{R}$, because we have defined the Trigonometric Functions only on $\mathbb{R}$ so far.
I have a look at $e^{ih}=\sum_{k=0}^{\infty}\frac{(ih)^k}{k!}=1+ih-\frac{h^2}{2}+....$
How can one describe the nth term of the sum?
Then I look at $\frac{e^{ih}-1}{h}=\frac{(1-1)}{h}+i-\frac{h}{2}+...=i-\frac{h}{2}+....$
Again how can I describe that the nth term of the sum?
Because $\frac{e^{ih}-1}{h}=\sum_{k=1}^{\infty}\frac{\frac{(ih)^k}{h}}{k!}<\sum_{k=0}^{\infty}\frac{\frac{(ih)^k}{h}}{k!}=\sum_{k=1}^{\infty}\frac{(ih^{-1})^k}{k!}=e^{ih^{-1}}$
and $ih^{-1}$ is a complex number and the exponential-series converges absolutely for all Elements in $\mathbb{C}$, I have found a convergent majorant. And I can apply the properties of Limits on $\frac{e^{ih}-1}{h}\forall, h\in \mathbb{R}$.
How can I now prove formally (i.e by chosing an explicit $\delta$) that
$$\forall_{\epsilon>0}\exists_{\delta>0}\forall_{h\in\mathbb{R}}|h-0|=|h|<\delta\Longrightarrow |(\frac{e^{ih}-1}{h}=i-\frac{h}{2}+...)-i|<\epsilon$$
I am also seeking for advice how to argue in such cases more intuitively (i.e by not always ginving an explicit $\delta$ ).