Compute the following sum by using Euler's formula, $ e^{i \theta} = \cos \theta + i \sin \theta$, $$\cos^{2n}\theta-{2n\choose 2}\cos^{2n-2}\theta\sin^2\theta+...+(-1)^{n-1}{2n\choose 2n-2}\cos^2\theta\sin^{2n-2}\theta+(-1)^n\sin^{2n}\theta$$
I have tried to rewrite the expression as:
$$\sum_{k=0}^n{2n\choose 2k}(-1)^k\sin^{2k}\theta\cos^{2n-2k}\theta$$
But I have no certain idea about how to continue. Could you give me some hints? Thanks!
$$(\cos t - i\sin t)^{2n}=\sum_{k=0}^{2n}{2n\choose k}(\cos t)^{2n-k}(-i)^k(\sin t)^k$$
If we sum them both, only the terms with even $k$ survive, so:
$$(\cos t + i\sin t)^{2n}+(\cos t - i\sin t)^{2n}=\sum_{k=0}^n{2n\choose 2k}(\cos t)^{2n-2k}i^{2k}(\sin t)^{2k}=\sum_{k=0}^n{2n\choose 2k}(\cos t)^{2n-2k}(-1)^k(\sin t)^{2k}$$
– Gibbs Feb 19 '21 at 17:45