We have the i.i.d. sequence $\{X\}$ where $X_i \sim U[0,1]$. Define the number $N = \text{min}\{n\geq1: X_1 + \ldots +X_n >x\} $ for $x \in (0,1)$. What is Pr$\{N > n\}$?
My attempt at a solution: Pr$\{N > n\} =$ Pr$\{X_1 + \ldots + X_n \leq x\} = \int_{A_x}\mathrm{d}x_1 \ldots \mathrm{d}x_n$, where $A_x = \{(x_1,\ldots,x_n):0\leq \sum^n_{i=1} x_i \leq x\}$
Correct answer is: Pr$\{N > n\} = \frac{x^n}{n!}$
Need help with:
- compute integral
- Is Pr$\{N > n\} =$ Pr$\{X_1 + \ldots + X_n \leq x\}$ even correct?
Thanks