0

So I have matrices $A \in \mathbb{R}^{m\times n}$ and $B \in \mathbb{R}^{n\times k}$, I should proof these two inequalities: $rank(AB) \leq \max(rank(A),rank(B))$ and $rank(AB) \leq \min(rank(A),rank(B))$.

So I understand that $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ $\Rightarrow$ $\max(rank(A)) \leq \max(\dim(Im(A))) = n$ and $B: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ $\Rightarrow$ $\max(rank(B)) \leq \max(\dim(Im(B))) = k$ and $\min(rank(A)) = \min(rank(B)) = \min (rank(AB)) = 0$.

But what after?

0 Answers0