On the path of Kemono Chen...
\begin{align}J&=\int_0^{\pi/2}\operatorname{arcsinh}(2\tan x)dx\end{align}
Perform the change of variable $y=\operatorname{arcsinh}(2\tan x)$,
\begin{align}J&=\int_0^{+\infty}\frac{2x\cosh x}{4+\sinh^2 x}\,dx\\
&=\int_0^{+\infty}\frac{4x\left(\text{e}^{x}+\text{e}^{-x}\right)}{14+\text{e}^{2x}+\text{e}^{-2x}}\,dx\\
&=\int_0^{+\infty}\frac{4x\text{e}^{-x}\left(\text{e}^{2x}+1\right)}{14+\text{e}^{2x}+\text{e}^{-2x}}\,dx\\
\end{align}
Perform the change of variable $y=\text{e}^{-x}$,
\begin{align}J&=-\int_0^1 \frac{4\ln x\left(1+\frac{1}{x^2}\right)}{14+x^2+\frac{1}{x^2}}\\
&=-\int_0^1 \frac{4\ln x\left(1+x^2\right)}{x^4+14x^2+1}\\
&=\left[-\arctan\left(\frac{4x}{1-x^2}\right)\ln x\right]_0^1+\int_0^1 \frac{\arctan\left(\frac{4x}{1-x^2}\right)}{x}\,dx\\
&=\int_0^1 \frac{\arctan\left(\frac{4x}{1-x^2}\right)}{x}\,dx\\
&=\int_0^1 \frac{\arctan\left(\left(2+\sqrt{3}\right)x\right)}{x}\,dx+\int_0^1 \frac{\arctan\left(\left(2-\sqrt{3}\right)x\right)}{x}\,dx\\
\end{align}
In the first integral perform the change of variable $y=\left(2+\sqrt{3}\right)x$,
In the second integral perform the change of variable $y=\left(2-\sqrt{3}\right)x$,
\begin{align}J&=\int_0^{2+\sqrt{3}}\frac{\arctan x}{x}\,dx+\int_0^{2-\sqrt{3}}\frac{\arctan x}{x}\,dx\\
&=\Big[\arctan x\ln x\Big]_0^{2+\sqrt{3}}-\int_0^{2+\sqrt{3}}\frac{\ln x}{1+x^2}\,dx+\Big[\arctan x\ln x\Big]_0^{2-\sqrt{3}}-\int_0^{2-\sqrt{3}}\frac{\ln x}{1+x^2}\,dx\\
&=\frac{5\pi}{12}\ln\left(2+\sqrt{3}\right)-\int_0^{2+\sqrt{3}}\frac{\ln x}{1+x^2}\,dx+\frac{\pi}{12}\ln\left(2-\sqrt{3}\right)-\int_0^{2-\sqrt{3}}\frac{\ln x}{1+x^2}\,dx\\
&=\frac{\pi}{3}\ln\left(2+\sqrt{3}\right)-\int_0^{2+\sqrt{3}}\frac{\ln x}{1+x^2}\,dx-\int_0^{2-\sqrt{3}}\frac{\ln x}{1+x^2}\,dx
\end{align}
In the first integral perform the change of variable $y=\dfrac{1}{x}$,
\begin{align}J&=\frac{\pi}{3}\ln\left(2+\sqrt{3}\right)+\int_{2-\sqrt{3}}^{+\infty}\frac{\ln x}{1+x^2}\,dx-\int_0^{2-\sqrt{3}}\frac{\ln x}{1+x^2}\,dx\\
&=\frac{\pi}{3}\ln\left(2+\sqrt{3}\right)+\int_0^{+\infty}\frac{\ln x}{1+x^2}\,dx-2\int_0^{2-\sqrt{3}}\frac{\ln x}{1+x^2}\,dx\\
&=\frac{\pi}{3}\ln\left(2+\sqrt{3}\right)-2\int_0^{2-\sqrt{3}}\frac{\ln x}{1+x^2}\,dx\\
\end{align}
Perform the change of variable $y=\tan x$,
\begin{align}J&=\frac{\pi}{3}\ln\left(2+\sqrt{3}\right)-2\int_0^{\frac{\pi}{12}}\ln\left(\tan x\right)\,dx\\
\end{align}
It is well known that,
\begin{align}
\int_0^{\frac{\pi}{12}}\ln\left(\tan x\right)\,dx=-\frac{2}{3}\text{G}
\end{align}
(see: Integral: $\int_0^{\pi/12} \ln(\tan x)\,dx$ )
Thus,
\begin{align}J&=\frac{\pi}{3}\ln\left(2+\sqrt{3}\right)-2\times -\frac{2}{3}\text{G}\\
&=\boxed{\frac{\pi}{3}\ln\left(2+\sqrt{3}\right)+\frac{4}{3}\text{G}}
\end{align}
NB:
Observe that,
\begin{align}2-\sqrt{3}&=\frac{1}{2+\sqrt{3}}\\
\ln\left(2-\sqrt{3}\right)&=-\ln\left(2+\sqrt{3}\right)\\
\int_0^\infty \frac{\ln x}{1+x^2}\,dx&=0
\end{align}
(perform the change of variable $y=\dfrac{1}{x}$ )