Let $X,Y$ be metric spaces and define $f: X\to Y$. Show that $f$ is continuous iff $f(\overline{A})\subset\overline{f(A)}$ for each $A\subseteq X$.
My proof: $\Rightarrow$ Let $f:X\to Y$ be continuous and $A\subseteq X$.
Let $y\in f(\overline{A})$, that is, there exist $x\in\overline{A}$ such that $f(x)=y$ with $x\in\overline{A}$, $x\in A$ or $x$ is a limit point of $A$.
I) If $x\in A$, as $f(x)=y$, then $y\in f(A)\subseteq\overline{f(A)}\implies y\in \overline{f(A)}$.
II) If $x$ is a limit point of $A$, that is, there exist $(x_{N})\subseteq A$ such that $\lim_{N\to\infty}{x_{N}}=x$, so $f(x_{N})=y_{N}\in f(A)$
Take the limit $\lim_{N\to \infty}{f(x_{N})}=\lim_{N\to\infty}{y_{N}}$. Since $f$ is continouos, we can exchange the limit $f(\lim_{N\to\infty}{x_{N}})=\lim_{N\to\infty}{y_{N}}\implies f(x)=\lim_{N\to\infty}{y_{N}}$ but $f(x)=y$ by hypothesis, so $\lim_{N\to\infty}{y_{N}}=y$, then $y$ is a limit pointt of $f(A)$.
Therefore, $y\in\overline{f(A)}$. From I) and II), we can conlcuded that $f(\overline{A})\subseteq \overline{f(A)}$.
The other direction of the proof is clear to me, so I need verification of $\Rightarrow$ proof.
Question: Is this proof sufficient? Thanks!