Consider the families of quadratic functions $f_a(x)=(a+4)x^2-2ax+2a-6 $ we needs to find functions with their graph below $x$ axis these functions has maximum if $a+4<0$ and don't intersect the $x$ axis if discriminant is negative $D<0$ so we nedd to find solution of system of innequalities
$$\begin{matrix}
a+4<0\\
D=4a^2-4(a+4)(2a-6)<0
\end{matrix}$$
$$\begin{matrix}a<-4 \\ 4a^2-8(a+4)(a-3)<0
\end{matrix}$$
$$\begin{matrix}a<-4 \\a^2-2a+24<0\end{matrix}$$
$$\begin{matrix}a<-4 \\a^2+2a-24>0\end{matrix}$$
$$\begin{matrix}a<-4\\a^2+6a-4a-24>0\end{matrix}$$
$$\begin{matrix}a<-4,\\(a-4)(a+6)>0\end{matrix}$$
$a+6<0\iff a\in(-\infty,-6)$ is solution