Given $\lim\limits_{x \to ∞} x \left(2 +(3+x) \ln \left( \dfrac{x+a}{x+b} \right) \right) = 2$
I need to solve for $a$ and $b$, so here we go,
$\lim\limits_{x \to ∞} x \left(2 +(3+x) \ln \left( \dfrac{x+a}{x+b} \right) \right)$
$= \lim\limits_{x \to ∞} x \left(2 +(3+x) \left(\ln (1+\frac{a}{x}) - \ln(1+\frac{b}{x}) \right) \right)$
$=\lim\limits_{x \to ∞} x \left(2 +(3+x)\left( \dfrac{a-b}{x} \right) \right)$
$=\lim\limits_{x \to ∞} \left(2x +(3+x)\left( a-b \right) \right)$
$=\lim\limits_{x \to ∞} \left(2x + 3(a-b) + x(a-b) \right) $
Since the limit exists, $2x$ and $x(a-b)$ must cancel out so $a-b = 2$
But if I do this, I'm left with $3(a-b) = 2$ which gives me a contradiction since $a-b$ is supposed to be $2$.
What do I do now? And where exactly have I gone wrong?
Thank you!