The proof given in This question is incorrect (the proof will be posted at the end for convenience). However, the question seem to address the fact that the statement to be proven is not stated correctly, and not the fact the the proof is incorrect.
Stated different, what I am asking is...
What step in the following (see below) proof of "If a number $n^2$ is even, then $n$ is even" is incorrect?
(Some step must be incorrect since If I change $n^2$ to $x$ and $n$ to $\sqrt{x}$, we would have a proof saying "if you give me any even number $x$, its square root is even")
The proof (by contrapositive) given is as follows:
If a number $n^2$ is even, then $n$ is even. The contrapositive is that is that if $n$ is not even (odd), then $n^2$ must also be not be even (be odd).
We represent n as $n=2p+1$. $n^2=4p^2 + 4p + 1 = 2(p^2+2) + 1$. We see that $n^2$ is odd. Therefore, the original statement must be true.
Is the problem that, in general, the negation of "$n$ is even", but rather "$n$ is odd OR $n$ is not an integer$?