if $n>1$ odd number,find $$2^n\equiv ?\pmod {12}$$
it seem the answer is $8$,because $$2^3=8\equiv 8\pmod{12}$$ $$2^5=32\equiv 8\pmod {12}$$ $$2^7=128\equiv 8\pmod {12}$$ $$2^9=512\equiv 8\pmod {12}$$ $$\cdots $$ But How to prove it for all postive integers $n$?