If $n=qm+r, \ 0 \leq r <m$, then show that the remainder upon dividing $a^n-1$ by $a^m-1$ is $a^r-1$.
Answer:
If $q$ is a positive integer, then $a^{m}$ divides $\large a^{qm}-1$. For,
$a^{qm}-1=(a^m-1)(1+a^m+a^{2m}+ \cdots +a^{m(q-1})$.
But I can not finish the problem.
Help me.