Note that $e^{in\theta}\ne 0$. Therefore,
$$
f_n(\theta)=\frac{e^{in\theta}}{1+e^{2in\theta}}=\frac{1}{e^{-in\theta}+e^{in\theta}}=\frac{1}{2}\frac{2}{e^{in\theta}+e^{-in\theta}}=\frac{1}{2}\frac{1}{\cos n\theta}.
$$
Just a reminder that this result would be invalid if $1+e^{2in\theta}=0$, or equivalently, if $\cos n\theta=0$.
To explore the convergence of $f_n(\theta)$ for a fixed $\theta$, it suffices to explore the convergence of $g_n(\theta)=\cos n\theta$. In this case, we may generalize the answers in this thread.
Suppose
$$
\lim_{n\to\infty}g_n(\theta)=g(\theta)
$$
for some function $g$ of $\theta$. Then it is a must that
$$
\lim_{n\to\infty}g_{n+1}(\theta)=g(\theta).
$$
Now, note that
$$
g_{n+1}(\theta)=\cos\left(n+1\right)\theta=\cos n\theta\cos\theta-\sin n\theta\sin\theta,
$$
or equivalently,
$$
\sin n\theta=\frac{g_n(\theta)\cos\theta-g_{n+1}(\theta)}{\sin\theta}
$$
for $\sin\theta\ne 0$. In this case, the convergence of $g_n(\theta)$ implies the convergence of $h_n(\theta)=\sin n\theta$, i.e.,
$$
\lim_{n\to\infty}h_n(\theta)=h(\theta)
$$
for some function $h$ of $\theta$.
Besides, note that
$$
g_n^2(\theta)+h_n^2(\theta)=\cos^2n\theta+\sin^2n\theta=1.
$$
It follows that
\begin{equation}
g^2(\theta)+h^2(\theta)=1.\tag{1}
\end{equation}
Finally, if $\sin\theta=0$, we have $\theta=k\pi$ with $k\in\mathbb{Z}$. In this case, $g_n(\theta)=\pm 1$, whose convergence depends on the choice of $k$, which is obvious to figure out. If $\sin\theta\ne 0$, recall that
$$
g_{n+1}(\theta)=g_n(\theta)\cos\theta-h_n(\theta)\sin\theta.
$$
Taking the limit on both sides yields
$$
g(\theta)=g(\theta)\cos\theta-h(\theta)\sin\theta,
$$
or equivalently,
\begin{equation}
h(\theta)=-g(\theta)\frac{1-\cos\theta}{\sin{\theta}}.\tag{2}
\end{equation}
Besides, apply the same trick to
\begin{align}
h_{n+1}(\theta)=\sin\left(n+1\right)\theta&=\sin n\theta\cos\theta+\cos n\theta\sin\theta\\
&=h_n(\theta)\cos\theta+g_n(\theta)\sin\theta,
\end{align}
and we obtain
$$
h(\theta)=h(\theta)\cos\theta+g(\theta)\sin\theta,
$$
or equivalently,
\begin{equation}
g(\theta)=h(\theta)\frac{1-\cos\theta}{\sin\theta}.\tag{3}
\end{equation}
You may find an immediate contradiction between (1), (2), and (3).
In conclusion, the convergence of $g_n(\theta)$ could be discussed for $\theta=k\pi$ with $k\in\mathbb{Z}$. Otherwise, $g_n(\theta)$ always diverges.