It's a typo, it should read
$$ \begin{align}&27(x^3)^2 + 26 x^3 - 1\\ =\ &(27x^3-1)(x^3+1) \end{align}$$
Remark $ $ You could have inferred this from what follows, i.e. they reduce it to
$\,x^3 = 1/27\,$ and $\,x^3 = -1\,$ implying that it has factors $\,27x^3-1\,$ and $\,x^3+1$
Worth mention is that we can use the AC method to factor such polynomials, i.e.
$$\begin{eqnarray} \rm\: a\:f(x)\:\! \,=\,\:\! a\:(a\:x^2 + b\:x + c) &\,=\,&\!\!\rm\: \color{#c00}{X^2} + b\:X + \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{\overbrace{ac,}^{\rm\qquad\ \ \ \ \ {\bf\large\ \ AC-method}}}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\! \ X = a\:x \\
\end{eqnarray}$$ In our case $$ {\begin{eqnarray}
f \, &\,=\,& \ \ \, 27 x^2+\ 26\ x\,\ -\ \ 1\\
\Rightarrow\,\ 27f\, &\,=\,&\!\,\ (27x)^2\! +26(27x)-1\\
&\,=\,& \ \ \ \color{#c00}{X^2}+\, 26\ X\,\ -\ 1,\,\ \ X\, =\, 27x\\
&\,=\,& \ \ \ \ (X+27)\ (X-1)\\
&\,=\,& \ (27x+27)\,(27x-1)\\
\Rightarrow\ \ f\:=\: \color{#0a0}{27^{-1}}\,(27f)\, &\,=\,& \ \ \ \ \ \ \ (x+ 1)\ (27x-1)\\
\end{eqnarray}}$$