I am having doubts about the following integral:$$\int \limits _{0}^{10} \int \limits _{0}^{10} \frac{x^2y^2}{(x^2+y^2)^{5/2}}\ \delta(x)\ \mathrm{d}x\mathrm{d}y$$ If we apply the definition of the Delta Dirac function we should get: $$\int \limits _{0}^{10}\int \limits _{0}^{10} \frac{x^2y^2}{(x^2+y^2)^{5/2}}\ \delta(x)\ \mathrm{d}x\mathrm{d}y=\int \limits _{0}^{10} 0\ \mathrm{d}y=0$$ Nevertheless, when one plots the 3D function: $z(x,y)=\frac{x^2y^2}{(x^2+y^2)^{5/2}}$ and intersect it with the plane $x=0$, what he gets is:
1) $z(0,y)=0$ for $y\neq 0$
2) $z(0,0)=\lim \limits _{x,y\rightarrow0}z(x,y)=- \infty$
so basically $$z(0,y)=-\delta\ (y)$$ and therefore: $$\int \limits _{0}^{10}\int \limits _{0}^{10} \frac{x^2y^2}{(x^2+y^2)^{5/2}}\ \delta(x)\ \mathrm{d}x\mathrm{d}y=-\int \limits _{0}^{10} \delta\ (y)\ \mathrm{d}y=-H(0)$$ N.B. If I choose any negative number as the lower integration extremum for the variable $y$ the final result is obviously $-H(a)=1\neq 0$. I do not know which of the two approaches is right, or if they are both wrong and in this case, what is the correct one?