Let $x_1, x_2,...,x_{2008}$ are numbers such that $|x_1|=999$ and for all $n=2,...,2008$
$$|x_n|=|x_{n-1}+1|$$
Find the smallest possible value of the sum
$$x_1+x_2+...+x_{2008}$$
My work:
Let $S=x_1+x_2+...+x_{2008}$.
If $x_1=-999, x_2=-998, ..., -1,0,-1,0$ then I think the answer $-500004$.
But I don't know how to prove that: