Seeking Methods to solve the following two definite integrals:
\begin{equation} I_(n) = \int_0^\infty \frac{\ln(t)}{t^n + 1}\:dt \qquad J(n) = \int_0^\infty \frac{\ln^2(t)}{t^n + 1}\:dt \end{equation}
For $n \in \mathbb{R},\:n \gt 1$
The method I took was to take the following integral:
\begin{equation} \int_0^\infty \frac{t^k}{\left(t^n + 1\right)^m}\:dt = \frac{1}{n}B\left(m - \frac{k + 1}{n}, \frac{k + 1}{n} \right) \end{equation}
Where: $0 \leq k \lt n$. Here let $m = 1$.
Differentiate under the curve with respect to $k$ and taking the limit as $k \rightarrow 0^+$ (via the Dominated Convergence Theorem), i.e.
\begin{align} \lim_{k \rightarrow 0+} \frac{d}{dk} \left[ \int_0^\infty \frac{t^k}{t^n + 1}\:dt \right] &= \lim_{k \rightarrow 0+} \frac{d}{dk} \left[\frac{1}{n}B\left(1 - \frac{k + 1}{n}, \frac{k + 1}{n} \right) \right] \\ \lim_{k \rightarrow 0+} \int_0^\infty \frac{t^k \ln(t)}{t^n + 1}\:dt &= \lim_{k \rightarrow 0+} \left[\frac{1}{n^2} B\left(1 - \frac{k + 1}{n}, \frac{k + 1}{n}\right)\left[\psi^{(0)}\left(\frac{k + 1}{n} \right) - \psi^{(0)}\left(1 - \frac{k + 1}{n} \right)\right] \right] \\ \int_0^\infty \frac{\ln(t)}{t^n + 1}\:dt&= \frac{1}{n^2} B\left(1 - \frac{1}{n}, \frac{1}{n}\right)\left[\psi^{(0)}\left(\frac{1}{n} \right) - \psi^{(0)}\left(1 - \frac{1}{n} \right)\right] \\ &=- \frac{\pi^2}{n^2}\operatorname{cosec}\left(\frac{\pi}{n}\right)\cot\left(\frac{\pi}{n} \right) \end{align}
Which is our expression for $I_n$. Taking the same approach but differentiating twice with respect to $k$ we arrive at our expression for $J_n$:
\begin{equation} J(n) = \int_0^\infty \frac{\ln^2(t)}{t^n + 1}\:dt = \frac{\pi^3}{n^3}\operatorname{cosec}\left(\frac{\pi}{n} \right)\left[\operatorname{cosec}^2\left(\frac{\pi}{n}\right) + \cot^2\left(\frac{\pi}{n}\right) \right] \end{equation}
And in fact we may generalise:
\begin{equation} \int_0^\infty \frac{\ln^p(t)}{\left(t^n + 1\right)^m}\:dt = \lim_{k\rightarrow 0}\frac{d^p}{dk^p}\left[\frac{1}{n} B\left(m - \frac{k + 1}{n}, \frac{k + 1}{n}\right)\right] \end{equation}
Where $p \in \mathbb{N}$
This method however was just an extension of another integral. I'm curious, if I had just started with $I_n, J_n$ what alternative methods could be used?