Let $f$ be a complex-valued, measurable function defined on $\mathbb R$ with $f(x)=f(x+2\pi)$
I want to show $$\int_{[0,2\pi]}f d\lambda=\int_{[\alpha,\alpha+2\pi]}f d\lambda $$
$(\alpha \in \mathbb R)$
My original attempt was to write $\int_{[\alpha,\alpha+2\pi]}f d\lambda -\int_{[0,2\pi]}f d\lambda=\int_{\alpha}^{\alpha+2\pi}f(x)dx-\int_{0}^{2\pi}f(x)dx=F(\alpha+2\pi)-F(2\pi)-(F(\alpha)-F(0))=\int_{2\pi}^{\alpha+2\pi}f(x)dx-\int_{0}^{\alpha}f(x)dx=0$
But I think I can't simply write is a Riemann Integral.
How can I show $$\int_{[0,2\pi]}f d\lambda=\int_{[\alpha,\alpha+2\pi]}f d\lambda $$ instead?