I am investigating (just for fun) the sum $$S=\sum_{n=2}^{\infty}\frac1{n^3-1}$$ Wolfram Alpha gives me the 'value' $$S=-\frac13\sum_{\{\omega\,:\,\omega^3+6\omega^2+12\omega+7=0\}}\frac{\psi_{0}(-\omega)}{\omega^2+4\omega+4}$$ Where $\psi_{0}(s)$ is the di-gamma function. I would like to know how this is found.
My attempts: recall that $$x^3-1=\prod_{k=1}^{3}(x-\alpha_k)$$ Where $\alpha_k=\exp\frac{2i\pi(k-1)}{3}$. Hence $$S=\sum_{n\geq2}\prod_{k=1}^3\frac1{n-\alpha_k}$$ I have shown in other posts that given some non-zero sequence $\{a_k:k=1,2,..,m\}$ where $j\neq k\iff a_j\neq a_k$ then $$\prod_{k=1}^{m}\frac1{x-a_k}=\sum_{k=1}^{m}\frac1{x-a_k}\prod_{j=1\\j\neq k}^{m}\frac1{a_k-a_j}$$ So $$S=\sum_{n\geq2}\bigg[\sum_{k=1}^{3}\frac1{n-\alpha_k}\prod_{j=1\\j\neq k}^{3}\frac1{\alpha_k-\alpha_j}\bigg]$$ Setting $b(k)=\prod_{j=1\\j\neq k}^{3}\frac1{\alpha_k-\alpha_j}$, $$S=\sum_{n\geq2}\sum_{k=1}^3\frac{b(k)}{n-\alpha_k}$$ $$S=b(1)\sum_{n\geq2}\frac1{n-\alpha_1}+b(2)\sum_{n\geq2}\frac1{n-\alpha_2}+b(3)\sum_{n\geq2}\frac1{n-\alpha_3}$$ Then focusing on $$\begin{align} S_k=&\sum_{n\geq2}\frac1{n-\alpha_k}\\ =&\sum_{n\geq2}\int_0^1x^{n-1}\frac{\mathrm dx}{x^{\alpha_k}}\\ =&\int_0^1\frac{1}{x^{\alpha_k-1}}\sum_{n\geq0}x^{n}\mathrm dx\\ =&\int_0^1x^{1-\alpha_k}(1-x)^{-1}\mathrm dx\\ =&\text{???} \end{align}$$ for this final integral I considered using the beta function but that wouldn't work because $\Gamma(0)$ is undefined. Plus I'm not sure if $S_k$ even converges.
As you can see, I'm stuck. Could I have a little help?
Thanks
Edit:
It can be seen here that there seems to be a pattern to evaluations of the function $$S(k)=\sum_{n\geq2}\frac1{n^{2k+1}-1},\qquad k\in\Bbb N$$ Which seem to be in the form $$S(k)=-\frac1{1+2k}\sum_{\{\omega\,:\,R_k(\omega)=0\}}\frac{\psi_0(-\omega)}{P_k(\omega)}$$ Where $R_k(x)$ is a polynomial of degree $k$ and $P_k(x)$ is a polynomial of degree $k-1$.