Let $f(x)=x^{101}-x$ and $g(x)=x^{101}-x+1$ in ring $\mathbb{Z}_{101}[x]$.
1) Are quotient rings $$\mathbb{Z}_{101}[x]/< f(x) > and ~~\mathbb{Z}_{101}[x]/<g(x)>$$ isomorphic?
2) How many of the invertible elements of $\mathbb{Z}_{101}[x]/ <f(x)> $ are equal to their inverse?
Attempt. 1) I believe not. Since $f(x)=x(x-1)\ldots (x-100)$ in $\mathbb{Z}_{101}[x]$, quotient ring $\mathbb{Z}_{101}[x]/ <f(x)>$, having $101^{100}$ elements, in not an integral domain. On the other hand, quotient ring $\mathbb{Z}_{101}[x]/<g(x)>$ has the same number of elements, i.e. $101^{100}$, but I am having difficulty to prove that it is not an integral domain ($g(x)$ has no roots in $\mathbb{Z}_{101}$, but I am not sure if this helps).
2) The number of invertible elements of $\mathbb{Z}_{101}[x]/ <f(x)>$ is: \begin{eqnarray}&&101^{101}-\big(100\cdot 101+100\cdot 101^2+\ldots+100\cdot 101^{100}\big)-1\nonumber\\ &=&101^{101}-100\cdot 101\cdot \big(1+101+\ldots+101^{99}\big)-1\nonumber\\ &=&101^{101}-100\cdot 101 \cdot \frac{101^{100}-1}{101-1}-1\nonumber\\ &=&101^{101}-101 \cdot (101^{100}-1)-1=101-1=100.\nonumber \end{eqnarray} In order for an invertible element $$h(x)+<f(x)>=a_{100}x^{100}+\ldots+a_0+<f(x)>$$ of $\mathbb{Z}_{101}[x]/ <f(x)>$ to be equal to its inverse, we must have: $$h(x)+<f(x)>=(h(x)+<f(x)>)^{-1} \iff$$ $$f(x)~|~(h(x))^2-1=\big(h(x)-1\big)\big(h(x)+1\big)\iff$$ $$\forall k\in \mathbb{Z}_{101}:~x-k~|~h(x)-1 ~~or ~~h(x)+1.$$ But how would this give the necessary conditions on the coefficients of $h(x)$, to determine the exact number of the desired elements?
Thanks in advance.