I am just observing this sum type $$\sum_{n=0}^{\infty}\frac{(2n)!!}{(2n+1)!!}\frac{{2n \choose n}}{4^n}g(n)\tag1$$
I tried varies functions of $g(n)$ then I came upon this one
$g(n)=\frac{2n+1}{(2n+1)^4-(2k)^4}$ which does give a neat closed form, but I can't prove it.
$$\sum_{n=0}^{\infty}\frac{(2n)!!}{(2n+1)!!}\cdot\frac{{2n \choose n}}{4^n}\cdot\frac{2n+1}{(2n+1)^4-(2k)^4}=-\frac{\pi\tanh(k\pi)}{64k^3}\tag2$$
where $k\ge 1$
How do we prove $(2)?$