I want to show that
$$ \dim \ker(AB) \le \dim \ker A + \dim \ker B. $$
My problem
I thought that I can do that in this way:
Let consider $x \in\ker B$
$$Bx = 0$$
Let multiply this from left side by $A$ and we get:
$$ABx = 0$$
so $$\ker B \subset\ker AB $$
so $$\dim \ker(B) \le \dim\ker AB$$
We can do the same thing with $\ker A$
let consider $ \vec{y} \in \operatorname{im}(AB) $ so $$ y = (AB)x $$ what is equivalent to $$ \vec{y} = A(B\vec{x}) = A\vec{w} $$ So $$ \vec{y} \in \operatorname{im}(AB) \rightarrow \vec{y} \in \operatorname{im}(A)$$ so $$ \operatorname{rank} AB \le \operatorname{rank} A \leftrightarrow \dim \ker A \le \dim \ker AB $$ But I am not sure what I should do later...
edited
I have seen this post $A, B$ are linear map and dim$null(A) = 3$, dim$null(B) = 5$ what about dim$null(AB)$ but I haven't got nothing like $\operatorname{im}(A|_{\operatorname{im}(B)})$ on my algebra lecture and I can't use that so I search for another proof (or similar without this trick)