1

I find the following identity and have checked on Mathematica, while I have no idea how to prove it:

$$\sum_{j=0}^n(-1)^{n-j}\binom{p+j}{j}\binom{n+\beta}{n-j}=\binom{p-\beta}{n}, \quad \beta>-1, \quad p>\beta-1.$$

It seems that proof by induction does not work and because of the gamma function, the transform technique does not work either.

3 Answers3

2

We have $$ \eqalign{ & \sum\limits_{j = 0}^n {\left( { - 1} \right)^{\,n - j} \left( \matrix{ p + j \cr j \cr} \right)\left( \matrix{ n + \beta \cr n - j \cr} \right)} = \cr & = \sum\limits_{j = 0}^n {\left( { - 1} \right)^{\,n} \left( \matrix{ - p - 1 \cr j \cr} \right)\left( \matrix{ n + \beta \cr n - j \cr} \right)} = \cr & = \left( { - 1} \right)^{\,n} \sum\limits_{\left( {0\, \le } \right)\,j\,\left( { \le \,n} \right)} {\left( \matrix{ - p - 1 \cr j \cr} \right)\left( \matrix{ n + \beta \cr n - j \cr} \right)} = \cr & = \left( { - 1} \right)^{\,n} \left( \matrix{ - p - 1 + n + \beta \cr n \cr} \right) = \cr & = \left( \matrix{ p - \beta \cr n \cr} \right)\quad \left| \matrix{ \;n \in Z \hfill \cr \;\forall p,\beta \hfill \cr} \right. \cr} $$ where the steps are:
- upper negation (always valid for integer $j$);
- we can omit summming limits, because they are implicit in the two binomials;
- convolution;
- upper negation (always valid for integer $n$).

G Cab
  • 35,272
1

First, if $n,x,y$ are integers, $0\le n\le x\le y$, then $$\binom xn=\sum_{k=0}^n(-1)^k\binom{y-x}k\binom{y-k}{n-k}.\tag1$$

This is just the inclusion-exclusion principle. If $X,Y$ are sets, $X\subseteq Y$, $|X|=x$, $|Y|=y$, then $\binom xn$ is the number of $n$-element subsets of $X$, which we think of as being sifted out of the collection of all $n$-element subsets of $Y$, and $\binom{y-x}k$ is the number of $k$-element subsets of $Y\setminus X$, and $\binom{y-k}{n-k}$ is the number of $n$-element subsets of $Y$ containing a given $k$-element subset.

Of course, for a fixed integer $n\ge0$, since $(1)$ is a polynomial identity in $x$ and $y$ which holds for all integers $y\ge x\ge n$, it also holds for all real or complex values of $x$ and $y$.

Setting $x=p-\beta$ and $y=p+n$ in $(1)$, we get $$\binom{p-\beta}n=\sum_{k=0}^n(-1)^k\binom{n+\beta}k\binom{p+n-k}{n-k}.\tag2$$ Finally, setting $k=n-j$ in $(2)$, we get your identity: $$\binom{p-\beta}n=\sum_{j=0}^n(-1)^{n-j}\binom{n+\beta}{n-j}\binom{p+j}j$$ for natural $n$ and arbitrary $\beta$ and $p$.


P.S. Here is a detailed explanation of $(1)$. If $S$ is a set, $\binom Sn$ is the set of all $n$-element subsets of $S.$ Suppose $n,x,y$ are integers, $0\le n\le x\le y$, and let $X,Y$ be sets, $|X|=x$, $|Y|=y$, $X\subseteq Y$. Let $m=y-x$, $Y\setminus X=\{y_1,\dots,y_m\}$, $[m]=\{1,\dots,m\}$. For $k\in[m]$ let $\mathcal A_k=\{A\in\binom Yn:y_k\in A\}$. Then $$\binom xn=\left|\binom Xn\right|=\left|\binom Yn-\bigcup_{k=1}^m\mathcal A_k\right|=\left|\binom Yn\right|-\left|\bigcup_{k=1}^m\mathcal A_k\right|=\binom yn-\sum_{\emptyset\ne K\subseteq[m]}(-1)^{k-1}\left|\bigcap_{k\in K}\mathcal A_k\right|=\binom yn-\sum_{\emptyset\ne K\subseteq[m]}(-1)^{k-1}\binom{y-|K|}{n-k}=\binom yn-\sum_{k=1}^m(-1)^{k-1}\binom mk\binom{y-k}{n-k}=\sum_{k=0}^m(-1)^k\binom mk\binom{y-k}{n-k}=\sum_{k=0}^n(-1)^k\binom mk\binom{y-k}{n-k}=\sum_{k=0}^n(-1)^k\binom{y-x}k\binom{y-k}{n-k}.$$

bof
  • 78,265
1

Evaluating

$$\sum_{j=0}^n (-1)^{n-j} {p+j\choose j} {n+\beta\choose n-j} = \sum_{j=0}^n (-1)^j {p+n-j\choose n-j} {n+\beta\choose j}$$

we write

$$\sum_{j=0}^n (-1)^j {n+\beta\choose j} [z^{n-j}] (1+z)^{p+n-j} \\ = [z^n] (1+z)^{p+n} \sum_{j=0}^n (-1)^j {n+\beta\choose j} z^j (1+z)^{-j}.$$

Now we may extend $j$ beyond $n$ because of the coefficient extractor in front:

$$[z^n] (1+z)^{p+n} \sum_{j\ge 0} (-1)^j {n+\beta\choose j} z^j (1+z)^{-j} \\ = [z^n] (1+z)^{p+n} \left(1-\frac{z}{1+z}\right)^{n+\beta} = [z^n] (1+z)^{p-\beta} = {p-\beta\choose n}.$$

Marko Riedel
  • 61,317
  • Sorry, I am lost in your answer. First, why we can extend $j$ beyond $n$. For example, when $j=n+1$. the equation is not $0$. Second, why the last equation is true. At least, there is $z$ on the LHS while it is not on the RHS. Sorry for my stupidness. – gouwangzhangdong Jan 08 '19 at 22:37
  • Expanding $(1+z)^{p+n} z^j (1+z)^{-j}$ in a formal power series yields $z^j + \cdots$ Hence, when $j\gt n,$ the contribution to $[z^n]$ is zero. For the second one, we are extracting a coefficient from a formal power series. – Marko Riedel Jan 08 '19 at 23:02
  • Ah, I misunderstood your notation. Sorry for that. The last thing is how $[z^{n-j}]$ becomes $[z^n]$ in the second equation. – gouwangzhangdong Jan 08 '19 at 23:12
  • If we have for a formal power series $f(z) = \cdots + q z^{n-j} + \cdots$ then $[z^{n-j}] f(z) = q$ but also $z ^j f(z) = \cdots + q z^n +\cdots$ so that $[z^n] z^j f(z) = q$ as well. – Marko Riedel Jan 08 '19 at 23:18
  • Thanks for you explanation. I got it! Do you know how to add friends on this website so I can just @ someone in the later days? – gouwangzhangdong Jan 08 '19 at 23:28
  • The site will alert the author of a post when it receives comments or replies. It will also send an alert on a comment or a directed comment with the at-notation. – Marko Riedel Jan 08 '19 at 23:44