Sum of series $\displaystyle \frac{15}{16}+\frac{15}{16}\cdot\frac{21}{24}+\frac{15}{16}\cdot\frac{21}{24}\cdot \frac{27}{32}+\cdots\cdots $
what i try
$\displaystyle S =\frac{15}{16}+\frac{15\cdot 21}{16\cdot 24}+\frac{15\cdot 21\cdot 27}{16\cdot 24\cdot 32}+\cdots \cdots $
i am trying to convert numerator and denomiantor terms into arithmetic progression
$\displaystyle \frac{9S}{8}=\frac{9\cdot 15}{8\cdot 16}+\frac{9\cdot 15\cdot 21}{8\cdot 16\cdot 24}+\cdots \cdots $
$\displaystyle \frac{9S}{8}+\frac{9}{8}+1=1+\frac{9}{8}+\frac{9\cdot 15}{8\cdot 16}+\frac{9\cdot 15\cdot 21}{8\cdot 16\cdot 24}+\cdots \cdots $
but it is divergent series
i did not know how i solve that infinite series
Help me how to solve