I am curious: For which $P,Q \in \text{SO}_n$ does $T_Q\text{SO}_n=T_P\text{SO}_n$ hold?
This reduces to the question at the identity,i.e. for which $Q \in \text{SO}_n$, $T_Q\text{SO}_n=T_{Id}\text{SO}_n=\text{skew}$. I will now prove that $Q^2=Id$ is a necessary condition. Is it sufficient?
Since $T_Q\text{SO}_n=QT_{Id}\text{SO}_n=Q\text{skew}$, this happens if and only if $Q\text{skew}=\text{skew}$, i.e. $-AQ^T=(QA)^T=-QA$ for every $A \in \text{skew}$, or $AQ^T=QA$. Taking traces we get $$ \langle Q,A\rangle=\text{tr}(Q^TA)=\text{tr}(AQ^T)=\text{tr}(QA)=\text{tr}(AQ)=-\text{tr}(A^TQ)= \langle A,Q\rangle,$$
so $\langle Q,A\rangle=0$ for every $A \in \text{skew}$, i.e. $Q \in \text{skew}^{\perp}=\text{sym}$, so $Q^T=Q$, or $Q^2=Id$.
Note that at even dimensions $Q=-Id$ is always a solution. For dimension $n=2$, this is indeed the only non-trivial solution (since $\text{SO}_2$ is the circle). In that case $Q^2=Id$, and $Q=\pm Id$ are equivalent.