Yes! In fact,
$$\displaystyle\int_{-a}^a \frac{f(x)+1}{b^x+1} \,\mathrm dx= a+\int_0^a f(x) \,\mathrm{d}x.$$
Proof.
We have
\begin{equation}\label{*}\tag{*}
\int_{-a}^a \frac{f(x)+1}{b^x+1} \,\mathrm dx \overset{\text{substituting } x \rightarrow -x}{=} (-1)^2 \cdot \int_{-a}^a \frac{f(x)+1}{b^{-x}+1} \,\mathrm{d}x
= \int_{-a}^a \frac{b^x \cdot (f(x) + 1)}{b^x + 1} \,\mathrm{d}x
\end{equation}
Thus
\begin{split}
\displaystyle 2 \cdot \int_{-a}^a \frac{f(x)+1}{b^x+1} \,\mathrm{d}x &\overset{\eqref{*}}{=} \int_{-a}^a \frac{f(x)+1}{b^x+1} \,\mathrm{d}x + \int_{-a}^a \frac{b^x \cdot (f(x)+1)}{b^x+1} \,\mathrm{d}x \\
&= \int_{-a}^a \frac{(b^x+1) \cdot (f(x)+1)}{b^x+1} \,\mathrm{d}x \\
&= \int_{-a}^a f(x)+1 \,\mathrm{d}x = 2 a + \int_{-a}^a f(x) \,\mathrm{d}x
\end{split}
This achieves a proof. $\square$