Let $\psi(\vec{r})$ be a scalar field, show that:
$$\nabla^2 \psi(\vec{r})=\lim_{\rho \to 0} \frac{3}{\pi \rho^2} \int_\Omega \psi(\vec{r}')-\psi(\vec{r})d\Omega'$$
where $\rho=|\vec{r}-\vec{r'}|$, $\Omega$ is a sphere of radius $\rho$ with it's center at $\vec{r}$ (and $d\Omega'$ symbolises the solid angle)
what I have tried it a Taylor expansion of $\psi(\vec{r}')$ around $\vec{r}$ that is: $$\psi(\vec{r}')=\psi(\vec{r})+\nabla\psi(\vec{r})\cdot (\vec{r}-\vec{r}')+..$$
which gives me (because the limith should kill all the higher terms in the expansion, I think..) $$\nabla^2 \psi(\vec{r})=\lim_{\rho \to 0} \frac{3}{\pi \rho^2} \int_\Omega \nabla\psi(\vec{r})\cdot\vec{\rho} d\Omega'$$
now I know that divergence is defined as $$\nabla \cdot \vec{F}=\lim_{\rho \to 0} \frac{1}{4\pi \rho^2} \int_\Omega \vec{F}\cdot \vec{dA}$$
so I get:
$$\lim_{\rho \to 0} \frac{1}{4\pi \rho^2} \int_\Omega\nabla\psi(\vec{r})\cdot \vec{dA}=\lim_{\rho \to 0} \frac{3}{\pi \rho^2} \int_\Omega \nabla\psi(\vec{r})\cdot\vec{\rho} d\Omega'$$
I just don't know how to show that these two limits are the same. can someone help (if what I have done so far is correct of course)