1. Let $\epsilon>0$ be given; Take for example, Prove that $1/n\to 0,$ as $n\to\infty.$
PROOF
Let $\epsilon>0$ be given (it means give me a specific positive nuimber, say $\epsilon$, then I'd prove to you that$ \;\forall\; \epsilon>0$, $1/n<\epsilon$ for large n). Hence, given any $\epsilon>0$, choose $N=\left[1/\epsilon+1\right]$, then,
\begin{align} \dfrac{1}{n}\leq \dfrac{1}{N}<\epsilon,\;\forall\; n\geq N. \end{align}
This implies that for all $\epsilon>0$,
\begin{align} \dfrac{1}{n}<\epsilon,\;\forall\; n\geq N. \end{align}
2. Let $n\in\Bbb{N}$ be fixed;
Pick a particular $n\in\Bbb{N}$ for the whole proof which cannot be changed in the course of proving.
EXAMPLE 2
Prove that for bounded positive real sequences $\{a_n\}_{n\in\Bbb{N}}$
\begin{align} \limsup_{n\to\infty} \sqrt[n]{|a_n|}\leq\limsup_{n\to\infty} \left|\dfrac{a_{n+1}}{a_n} \right| \end{align}
PROOF
Let $\epsilon>0$ be given and $\beta:=\limsup_{n\to\infty} \left|\dfrac{a_{n+1}}{a_n} \right| $, then there exists $N$ such that
\begin{align} \left|\dfrac{a_{n+1}}{a_n} \right|<\beta+\epsilon,\;\;\forall\;n\geq N. \end{align}
Let $n\geq N$ be fixed,
\begin{align} \left|\dfrac{a_{n}}{a_N} \right|=\left|\dfrac{a_{n}}{a_{n-1}} \right|\cdot \left|\dfrac{a_{n-1}}{a_{n-2}} \right|\cdots\left|\dfrac{a_{N+1}}{a_{N}} \right|<\left(\beta+\epsilon\right)^{n-N}\end{align}
This implies
\begin{align} \sqrt[n]{\left|a_{n}\right|}<\sqrt[n]{\left|a_N \right|}\left(\beta+\epsilon\right)^{1-N/n}\end{align}
Taking $\limsup$,
\begin{align} \limsup_{n\to\infty} \sqrt[n]{|a_n|}\leq\beta+\epsilon\end{align}
Since $\epsilon>0$ was arbitrary,
\begin{align} \limsup_{n\to\infty} \sqrt[n]{|a_n|}\leq\limsup_{n\to\infty} \left|\dfrac{a_{n+1}}{a_n} \right| \end{align}
3. Such that, arbitrary
EXAMPLE 3
Prove that $f:X\to\overline{\Bbb{R}}$ is lower semi-continuous if
\begin{align} \forall\;\lambda\in \Bbb{R},\;\;f^{-1}\left((\lambda,\infty] \right)\;\;\text{is open in}\;X. \end{align}
PROOF
Let $\lambda\in \Bbb{R}$ and $x_0\in X$ be arbitrary, such that $\lambda<f(x_0)$. Then, \begin{align} x_0\in f^{-1}\left((\lambda,\infty] \right). \end{align} Take \begin{align} V=f^{-1}\left((\lambda,\infty] \right), \;\;\text{where }\;\;V\in U\left(x_0 \right).\end{align} Let $x\in V$, then $f(x)\in (\lambda,\infty] ,$ which implies that $f(x)>\lambda.$ Hence, for all $\lambda\in \Bbb{R}$ and $x_0\in X$ such that $\lambda<f(x_0)$, $f(x)>\lambda,\;\forall\;x\in V.$ This implies that that $f:X\to\overline{\Bbb{R}}$ is lower semi-continuous.
4. Fixed but arbitrary, fixed, such that and whenever.
EXAMPLE 4
Prove that $|x|$ is continuous on $\Bbb{R}$.
Let $\epsilon>0$ be given, $x\in \Bbb{R}$ be fixed but arbitrary and $x_0\in \Bbb{R}$ be fixed, such that $|x-x_0|<\delta,$ then
\begin{align} \left| |x|-|x_0| \right| \leq \left| x-x_0 \right|<\delta.\end{align}
So, given any $\epsilon>0$, choose $\delta=\epsilon,$ then
\begin{align} \left| |x|-|x_0| \right|<\epsilon,\;\;\textbf{whenever}\;\;\left| x-x_0 \right|<\delta\end{align}
I pick any $x\in\Bbb{R}$ for the proof but it will be fixed throughout the proof.