If you are familiar with the vec operation for matrices, then you could proceed as follows.
$$\eqalign{
&S\,S
&= A^TA \cr
&S\,dS\,(I)+(I)\,dS\,S
&= A^T\,dA\,(I)+(I)\,dA^T\,A \cr
&(I^T\otimes S+S^T\otimes I)\,{\rm vec}(dS)
&= (I^T\otimes A^T)\,{\rm vec}(dA)+(A^T\otimes I)\,{\rm vec}(dA^T) \cr
&\Big(I\otimes S+S\otimes I\Big)\,{\rm vec}(dS)
&= \Big((I\otimes A^T)+(A^T\otimes I)K\Big)\,{\rm vec}(dA) \cr
&\frac{\partial{\,\rm vec}(S)}{\partial{\,\rm vec}(A)}
&= \Big(I\otimes S+S\otimes I\Big)^+
\Big((I\otimes A^T)+(A^T\otimes I)K\Big) \cr\cr
}$$
where $M^+$ denotes the pseudoinverse of $M$, $I$ is the identity matrix, and $K$ is the commutation matrix associated with the Kronecker product. The solution also takes advantage of the fact that $I$ and $S$ are symmetric.