2

If eigenvectors $x_1, x_2,...,x_k$ correspond to different eigenvalues $λ_1, λ_2,...,λ_k$, then $x_1, x_2,...,x_k$ are linearly independent.

Proof:

Suppose $$C_1{x_1}+C_2{x_2}+...C_k{x_k}=0 ...(1)$$ $$A(C_1{x_1}+C_2{x_2}+...C_k{x_k})=0$$ $$\Rightarrow C_1{λ_1}{x_1}+C_2{λ_2}{x_2}+...+C_k{λ_k}{x_k}=0...(2)$$ $$λ_k(1)-(2)=C_1{λ_1}{x_1}+C_2{λ_2}{x_2}+...+C_{k-1}{λ_k}{x_{k-1}}-C_1{λ_1}{x_1}-C_2{λ_2}{x_2}-...-C_{k-1}{λ_{k-1}}{x_{k-1}}=0$$ $$\Rightarrow C_1({λ_k}-{λ_1}){x_1}+...+C_{k-1}({λ_k}-{λ_{k-1}}){x_{k-1}}=0$$ And how to do next to show that $C_1=0=C_2=...=C_k$?

Maggie
  • 369

0 Answers0