0

Let $(x_n)$ be a sequence in R. Show that if $\lim_{n \to \infty} x_n = 0$ if follows that $\lim_{n \to \infty} (1+\frac{x_n}{n})^n = 1$

My idea looks like the following (using the binomial theorem): $$(1+\frac{x_n}{n})^n = \sum_{k=1}^{n} {{n}\choose{k}} (\frac{x_n}{n})^k = \sum_{k=1}^{n} \frac{n!}{k! \cdot (n-k)!} (\frac{x_n}{n})^k=\sum_{k=1}^{n} \frac{n \space \cdot \space ... \space \cdot \space (n-k+1)}{k!} (\frac{x_n}{n})^k$$

How do I proceed from here? Am I somehow supposed to split the sum up and then take the limit? Can someone help me out? Thanks in advance!

John D.
  • 15

1 Answers1

0

For $n$ sufficiently large $-\epsilon <x_n <\epsilon$ so $(1-\frac {\epsilon} n)^{n} \leq (1-\frac {x_n} n)^{n} \leq (1-\frac {\epsilon} n)^{n}$. Use squeeze theorem, the fact that $(1+\frac x n)^{n} \to e^{x}$ for any real number $x$, and then observe that $e^{-\epsilon}$ and $e^{\epsilon}$ both tend to $1$ as $ \epsilon \to 0$.