I need the following Laplace transform to solve the Differential Equation
$$\int_{0}^{\infty}e^{-pt}\sin\sqrt{t}\, dt, \quad \text{where} \ \ \ p>0$$
I tried Integration by parts after substituting $t=x^2$, but didn't work.
\begin{align} \int_{0}^{\infty}e^{-pt}\sin\sqrt{t}dt &\overset{t=x^2}= \int_{0}^{\infty}e^{-px^2}2x\sin xdx \ = \ \text{I}\\ & = \sin x \ \frac{e^{-px^2}}{-p} + \frac{1}{p}\int_{0}^{\infty}e^{-px^2}\cos xdx \\ & = \sin x \ \frac{e^{-px^2}}{-p} + \frac{1}{p}\left(-e^{-px^2}\sin x - \int_{0}^{\infty}e^{-px^2}(-2px)(-\sin x)dx\right) \\ & = -\sin x \ \frac{e^{-px^2}}{p} + \frac{1}{p}\left(-\sin xe^{-px^2} - p\int_{0}^{\infty}e^{-px^2}(2x)(\sin x)dx\right) \\ & = -\sin x \ \frac{e^{-px^2}}{p} + \frac{1}{p}\left(-\sin xe^{-px^2} - p\text{I}\right) \\ \end{align} \begin{align} & \text{I} = -\sin x \ \frac{e^{-px^2}}{p} + \frac{1}{p}\left(-\sin xe^{-px^2} - p\text{I}\right) \\ & 2\text{I} = -2\sin x \ \frac{e^{-px^2}}{p}\Big|_0^\infty \\ & 2\text{I} = 0 \end{align}