1

Consider the function on the variable $x\in R$ and the parameter $a\in R$: $$f(x)=\frac{a-\sqrt{x}}{a+\sqrt{x}}$$ Of course if $x>=0$ you have a simple function $f:R \rightarrow R$.
If $x<0$ you can write: $$f(x)=\frac{a-\sqrt{(-1)(-x)}}{a+\sqrt{(-1)(-x)}}$$ $$f(x)=\frac{a-[\pm i\sqrt{(-x)}]}{a+[\pm i \sqrt{(-x)}]}$$ So now there are 4 possibilities according to the signs you put: $$\binom{+}{+} \rightarrow f(x)=\frac{a-[i\sqrt{(-x)}]}{a+[i \sqrt{(-x)}]}=e^{i\theta(x)} $$ $$\binom{+}{-} \rightarrow f(x)=\frac{a-[+i\sqrt{(-x)}]}{a+[-i \sqrt{(-x)}]}=1 $$ $$\binom{-}{+} \rightarrow f(x)=\frac{a-[-i\sqrt{(-x)}]}{a+[+i \sqrt{(-x)}]} =1$$ $$\binom{-}{-} \rightarrow f(x)=\frac{a-[-i\sqrt{(-x)}]}{a+[-i \sqrt{(-x)}]} e^{-i\theta(x)} $$ Finally: $$ f(x)=\begin{cases} 1 \\ e^{-i\theta(x)}\\ e^{i\theta(x)} \end{cases} $$ So I'd say that for $x<0$ $f(x)$ isn't anymore a function...Is it right?

Landau
  • 219
  • 2
  • 10

1 Answers1

0

This is not a function over the complex numbers, since the square root of a complex number is not a well-defined notion. See How do I get the square root of a complex number?

Hans Hüttel
  • 4,271