I'm trying to compute $\iint_S F\cdot$ dS where $F=\langle x,y,z^2\rangle$ and $S$ is the unit sphere centered at the origin.
Here's my attempt:
On the sphere we can describe any point by $r(\phi,\theta)=\langle \sin\phi \cos\theta,\sin\phi \cos\theta, \cos\theta\rangle$ and the outward normal vector to $S$ is given by $n=r.$ Therefore,
$$\iint_S F\cdot dS = \iint_D F(r(\phi,\theta))\cdot n dA$$ $$=\iint_D \langle \sin\phi\cos\theta,\sin\phi\sin\theta,\cos^2\theta\rangle\cdot \langle \sin\phi\cos\theta,\sin\phi\sin\theta,\cos\theta\rangle dA$$ $$=\iint_D \sin^2\phi(\cos^2\theta + \sin^2\theta)+\cos^3d\theta dA = \int_0^{\pi}\int_0^{2\pi} \sin^2\phi +\cos^3\theta d\theta d\phi = \pi^2$$
however the answer is $\frac{8}{3}\pi$ and the last equals sign is correct (used Wolfram to confirm), so I guess I did something wrong in the setup.