Let $V$ be a infinite dimensional Banach space over the complex plane $\mathbb{C}$
Let $\{v_n\}_{n \in \mathbb{N}} \subset V$ be a sequence of linear independent vectors in $V$
Let $m \in \mathbb{N}$ be a fixed positive integer
I would like to know if it is true that:
$$ \overline { \operatorname{span} (\{v_n\}_{n \geq 1}) } = \operatorname{span} \left( \{v_n\}_{n \leq m} \bigcup \overline { \operatorname{span} (\{v_n\}_{n \geq m+1}) } \right) $$
Thanks.