Let $x \in \mathbb{R}$ and let $n \in \mathbb{N}$ then evaluate: $$\sum_{k=0}^n{n \choose k}\sin\left(x+\frac{k \pi }{2}\right)$$
I could only go up to breaking this sum in two parts of $\sin x$ and $\cos x$ in the following way: $$\sum_{k=0}^n{n \choose k}\sin\left(x+\frac{k \pi }{2}\right)=\sum_{k=0}^{\lfloor{n/2}\rfloor}(-1)^k{n \choose 2k}\sin x+\sum_{k=0}^{\lfloor{n/2}\rfloor}(-1)^k{n \choose 2k+1}\cos x$$ I have the intuition that $\sin(x+y)=\sin x\cos y+\sin y\cos x$ should be used at some point. Can someone please help me out?