A very small set of very Goldbachian numbers (Explanation by Pomerance):
Let $n = 2\cdot p_1\cdot p_2\cdot \dots$ and $\hat{p}$ be the smallest prime not dividing $n$. If $\hat{p}^2 \geq \frac{n}{2}$ then
$n$ is the sum of two primes (in a maximum number of ways).
By Bertrand's Postulate, there exists a prime number $q \in (\frac{n}{2},n-2)$. Since $q$ is prime, $n-q$ is coprime to $n$. If $n-q$ is composite then $n-q$ must be a product of primes not dividing $n$. However, if the square of the smallest prime not dividing $n$ is larger than $\frac{n}{2}$, no such composite number $n-q$ exists. So $n-q$ is prime and $q$ is prime and therefore $n$ is a sum of two primes.
The following numbers satisfy Goldbach for every possible choice of a prime number in the interval $(\frac{n}{2}, n-2)$:
\begin{align}
n&&\text{factors of }n&&\text{min } \hat{p}\perp n&&\hat{p}^2\not<\frac{n}{2}\\
12&&2^2\cdot 3&&5&&25\not<6\\
18&&2\cdot 3^2&&5&&25\not<9\\
24&&2^3\cdot 3&&5&&25\not<12\\
30&&2\cdot 3\cdot 5&&7&&49\not<15\\
36&&2^2\cdot 3^2&&5&&25\not<18\\
42&&2\cdot 3\cdot 7&&5&&25\not<21\\
48&&2^4\cdot 3&&5&&25\not<24\\
60&&2^2\cdot 3\cdot 5&&7&&49\not<30\\
90&&2\cdot 3^2\cdot 5&&7&&49\not<45\\
210&&2\cdot 3\cdot 5\cdot 7&&11&&121\not<105\\
\end{align}