Add it: Let $m,n$ be postive integers. Find the closed form of
$$f=\sum_{k=1}^{n} \cos^{2m+1}{\left(\dfrac{(2k-1)\pi}{2n+1}\right)}$$
for $m, n \in \mathbb{N}^{+}$.
Maybe use Euler
\begin{align} 2\cos{x} &=e^{ix}+e^{-ix} \\ \dfrac{\pi}{2n+1} &=x \end{align}
then
\begin{align} f &= \dfrac{1}{2^{2m+1}}\sum_{k=1}^{n}(w^{(2k-1)}+w^{-(2k-1)})^{2m+1} \\ &=\dfrac{1}{2^{2m+1}}\sum_{k=1}^{n}\sum_{i=0}^{2m+1}\binom{2m+1}{i}w^{-(2k-1)i}w^{((2m+1)-i)(2k-1)}\\ &=\dfrac{1}{(2w)^{2m+1}}\sum_{i=0}^{2m+1}\binom{2m+1}{i}w^{2i}\sum_{k=1}^{n}w^{(4m-4i+2)k} \end{align}
where $w=e^{ix}$.