I am looking for numerical evidence that $$\sum_{m\geq1}\sum_{n\geq1}\frac{(-1)^n}{n^3}\sin\left(\frac{n}{m^2}\right)=\frac{\pi^6}{11340}-\frac{\pi^4}{72}$$ I have proven it, but I just want to be extra sure. Desmos only gives me accuracy to the third decimal place, but I know that some of you (@Claude Leibovici) are able to give me extremely high decimal accuracy.
Proof:
We know that for $|t|\leq\pi$, $$t^2=\frac{\pi^2}3+4\sum_{n\geq1}\frac{(-1)^n}{n^2}\cos nt$$ Solving for the sum then integrating both sides from $0$ to $x$, $$\sum_{n\geq1}\frac{(-1)^n}{n^3}\sin(nx)=\frac{x^3}{12}-\frac{\pi^2x}{12}$$ Then plugging in $x=\frac1{m^2}$ for integer $m\geq1$, $$\sum_{n\geq1}\frac{(-1)^n}{n^3}\sin\bigg(\frac{n}{m^2}\bigg)=\frac{1}{12m^6}-\frac{\pi^2}{12m^2}$$ then applying $\sum_{m\geq1}$ on both sides, $$\sum_{m\geq1}\sum_{n\geq1}\frac{(-1)^n}{n^3}\sin\bigg(\frac{n}{m^2}\bigg)=\frac1{12}\zeta(6)-\frac{\pi^2}{12}\zeta(2)$$ We simplify to reach our conclusion $$\sum_{m\geq1}\sum_{n\geq1}\frac{(-1)^n}{n^3}\sin\bigg(\frac{n}{m^2}\bigg)=\frac{\pi^6}{11340}-\frac{\pi^4}{72}$$
\bigg(
and\bigg)
and replacing them by\left(
and\right)
. – Did Dec 25 '18 at 09:36