Calling
$$
x_2-x_1 = h\\
y_2-y_1 = v
$$
we have
$$
v = a\cosh\left(\frac{x_2}{a}\right)-a\cosh\left(\frac{x_1}{a}\right)\\
L = a\sinh\left(\frac{x_2}{a}\right)-a\sinh\left(\frac{x_1}{a}\right)
$$
so after some trigonometric transformations we arrive at
$$
L^2-v^2 = 4a^2\sinh^2\left(\frac{x_2-x_1}{2a}\right)
$$
so we have finally
$$
L^2-v^2 = 4a^2\sinh^2\left(\frac{h}{2a}\right)
$$
with this last equation we can determine the $a = a_0$ value using an iterative procedure.
NOTE
Calling now
$$
y(x) = y_0 + a_0\cosh\left(\frac{x-x_0}{a_0}\right)
$$
such that
$$
y(x_1) = y_1\\
y(x_2) = y_2
$$
The minimum point is obtained by solving for $x$
$$
y'(x) = 0
$$
so if $x_1 \le x_0 \le x_2$ follows
$$
\min y(x) = y_0 + a_0
$$
otherwise
$$
\min y(x) = \min(y_1, y_2)
$$
Now, regarding the iterative process we have
$$
\frac{L^2-v^2}{4a^2} = \sinh^2\left(\frac{h}{2a}\right)
$$
or
$$
C_0^2\lambda^2=\sinh^2\lambda,\ \ \lambda = \frac{h}{2a},\ \ C_0 = \frac{\sqrt{L^2-v^2}}{h}
$$
or
$$
C_0 \lambda = \sinh(\lambda)
$$
which should be solved numerically.