I am reading an algebra book now.
Let $p(x) \in \mathbb{R}[x]$ and $\deg p = n$.
Let $\alpha \in \mathbb{C} - \mathbb{R}$ and $p(\alpha) = 0$.Then, $p(\bar{\alpha}) = \overline{p(\alpha)} = 0$.
So, $p(x)$ is divisible by $(x-\alpha)(x-\bar \alpha)$.
$(x-\alpha)(x-\bar \alpha) = x^2 - 2 \Re(\alpha) x + |\alpha|^2 \in \mathbb{R}[x]$.
So, there is a polynomial $q(x) \in \mathbb{R}[x]$ such that $p(x) = (x^2 - 2 \Re(\alpha) x + |\alpha|^2) q(x)$.
Why $q(x) \in \mathbb{R}[x]$?
Is it necessary to prove that $q(x) \in \mathbb{R}[x]$?
Or,
is it obvious that $q(x) \in \mathbb{R}[x]$?
My proof is here:
There is $q_1(x) \in \mathbb{C}[x]$ such that $p(x) = (x-\alpha)(x-\bar \alpha) q_1(x)$ in $\mathbb{C}[x]$.
There is $q_2(x), r_2(x) \in \mathbb{R}[x]$ such that $p(x) = (x^2 - 2 \Re(\alpha) x + |\alpha|^2) q_2(x) + r_2(x)$ in $\mathbb{R}[x]$ and $2 > \deg r_2$.
$p(x) = (x-\alpha)(x-\bar \alpha) q_1(x) = (x^2 - 2 \Re(\alpha) x + |\alpha|^2) q_2(x) + r_2(x)$ in $\mathbb{C}[x]$.
By a theorem about long division, $q_1(x) = q_2(x), r_2(x) = 0$.
So, $p(x) = (x^2 - 2 \Re(\alpha) x + |\alpha|^2) q_2(x)$, and $q_2(x) \in \mathbb{R}[x]$.